U-processes in the Analysis of a Generalized Semiparametric Regression Estimator
نویسنده
چکیده
We prove √ n-consistency and asymptotic normality of a generalized semiparametric regression estimator that includes as special cases Ichimura’s semiparametric least squares estimator for single index models, and the estimator of Klein and Spady for the binary choice regression model. Two function expansions reveal a type of U-process structure in the criterion function; then new U-process maximal inequalities are applied to establish the requisite stochastic equicontinuity condition. This method of proof avoids much of the technical detail required by more traditional methods of analysis. The general framework suggests other √ n-consistent and asymptotically normal estimators.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملWavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملBootstrap of a Semiparametric Partially Linear Model with Autoregressive Errors
This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable serially correlated random errors. The random errors are modeled by an autoregressive time series. We show that the distributions of the feasible semiparametric generalized least squares estimator o...
متن کاملEfficiency Comparisons in Multivariate Multiple Regression with Missing Outcomes
We consider a follow-up study in which an outcome variable is to be measured at fixed time points and covariate values are measured prior to start of follow-up. We assume that the conditional mean of the outcome given the covariates is a linear function of the covariates and is indexed by occasion-specific regression parameters. In this paper we study the asymptotic properties of several freque...
متن کامل